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A channel is defined to be a triple S = (X, w(.|x), (Y, Y}

where X and Y are abstract sets, Y' is a o-algebra of subsets of
Y, and u(.|x) is a proBability measure on (Y, Y') for each xcX,
X and Y'afe usually assumed to be'eitﬂor-SLbsets qf the real
numbers or subsets of Euclidean n-space, The channel has addi~
tivd.noise. u, if u(A[x) = u(A-x) for all xeX, AcY'. For a
given channel S and a given real number 0 < A < i a A-code 6f
length n for S is a set of pairs (xys D)) ++v (x,, D ) where
xicX.-DicYY, Di/\ Pj =g ifiy jland u(Di[xi) ZJI-A for i = i,
2y «sey Ny The supremum of the nonempty set of integers N su;h

that S admits a A-code of length N is denoted by N(S, A).

Let Q*(S) be the set of all probability measures defined on

X, For neQ*(S)., Let y" be the measure defined on (Y, Y') by
y'(B) = [ u(B|x)dr

for all BeY', For xeX, let f"(ylx) = du(.lx)/dy" (the Radon-
Nikodym derivative), The capacity, C, of the channel S is

defined to be sup {C(m)|neQ*(S), support of = finite}, where

C(m) = [[ log £ (y|x) wfdy|x)n(dx).

The following improvement of Fano's theorem is proved in

Chapter 11,
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Theorem: Let S be a channel with capacity C, and let

0 <A <] be given, 1lhen foranyn >0,0 <t <1
(1-1) log N(S™, A) < nC + log (l:§l.
: t

In Chapter III the connected A-code is defined and invqsfi-

gated, This code, (xi. Di}?_l; is defined to be a A-code where

each Di is a U-connected set; U is a topology on Y, The
supremum of the set {N|S admits a connected A-code ofAlength N}
is denoted by N(S, A, U), Most pf the results of this chapter
are for a channel of type A - a channel with additive noise u
which is absolutelylcontinuous with respect to Lebesgue measure,
v; X is a closed interval; Y is the real numbers; and, U is the

usual topology for the reals.

let £ = du/dy, the Radon-Nikodym derivative. f is a bell
function if thers exists y such that £ is increasing for all
y < y, and f is deéreasing for ally 2 Yor In Chapter III two

conditions for N(S, Al = N(S, A, U) are obtained when S is a

channel of type A and f is a bell function. One of these condi-

tions is necessary; the other is sufficient,

A technique for delineating those measures which cannot

affect the value of N(S, A, U) is investigated in Chapter 1V, ' ' L
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Sufficient conditions for a channel to have finite capacity
are investigated in Chapter V., The main result is: |
Theorem: Let S be a channel with additive noise u
which is absolutely continuous with respect to Lebesgus meas-
ure, Y. If there exists a choice for the Radon-Nikodym deriva-
tive, £ = du/dy, such that [ g(y)dy < = where g(y) =

sup {£(y|x)[xcX} then the capacity of S is finite.
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CHAPTER I ,

: INTRODU(STION AND PRELIMINARIES b
‘ Most of the temminology and notations which will be used

herein ar.e‘s‘t'anda‘rd; however, to remove any possible ambiguity,
ﬁuch of it v;ill be explained, For a set A, acA meﬁs that'a is ’ ' ‘
a memb‘e'rvb"f A; the ccnplement.'of A will be written AS, It will |
sometimes be convenient to refer to a member of A as a point of
A, All logarithms will be to the ~se e. The convention will
be adopted fhroughout to define itho expression 0 log O to be
equal to 0. Integrals will alwa+s be in the sense of Lebesgue
integration, The meaning of une:fplained terminology or notation
of integration theory or measure theory will be that of Halmos (4],
and the meani‘ﬁg of any wnexplained probability theory terminology

or notation will be that of Loeve [6].

Information theory is one of the youngest branches of applied
probability theory. Its conception can, with certainty, be con-
sidered to be the appearance in 1948 of the now classical work of
Shannon [7]. From the very begining, information theory presented
to mathematicians a whole new set of probvlen‘s, including some very !

difficult ones. It is quite natural that early investigators,

" including Shannon, whose basic goal was to obtain practical results,'




were not able to give enough attention to these mathematical
difficulties, Consequently at many points of their investiga- -
tions, they were compelled either to te satisfied with reasor-

ing of an inconclusive nature or to limit the set of objects

studied.

Investigations with the aim of setting information theory
on a solid mathematical basis have begun to appear in recent
years. However, in most of these endeavors finiteness conditions

Nave Been placed on certain sets in order to establish the desired

results,

One of the most important entities considered in the mathe-
matical study of information theory is the concept of a channel.
A channel is defined to be the triple S = {X, u(.|x), (Y, Y')}
where X is an arbitrary set, (Y, Y') is s measurable space, and
u(.|x) is a probability measure on (Y, Y') for each xeX, The

set X is usually referred to as the input or input space; the set

Y is referred to as the output or output space., If both X and Y

contain only a finite number of elements, the channel is said to
be discrete; if X has a finite number of elements but Y is infinite
(either countable or uncountable), S is called semi-continuous (the

term "semi-continuous’ is of engineering origin).

i
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In most of the literature it is assumed that the cﬁnnnel
is either discrete or semi-continuous, Such restrictions will
not be made in this dissertation; it will be assumed throughout
thgt X and Y are arbitrary sasts unless t.h&e is a specific state-

ment to the contrary.

i i A e

A channel operates as follows. The existence of ‘: sender
and receiver is assumed. The function of the sender is.to choose
'8 meober cf X and transmit it. Since it is not necessﬁry to have
a precise definition of the term transmit, a somewhat heuristic
exﬁlanation is given. Transmission consists of choosing a point
xeX and associating with x a point yeY which, in general, depends

on x, The points x and y will be called the transmitted syubol

(transmittbd signal, symbol sent, etc.) and the received sywbol

(received signal, received point, etc.), respectively, If a
particular transmitted symbol always results in the same received
symbol, the transmission may be considered as a function T: X + Y,
The wore interesting case is that in which a given trmsnitte@ |
signal does not always result in the same relceived syebol. 1In
tfxis case the function T must be considered as a function of x

and another variable, called the noise. The received variable is
considered to be a chance variable, i.e., specific occurrences

are governed by probability. The only property of the transmission - i

known by the sender and receiver is that for each x sent the




probability that the received symbol is a member of AcY' is

u(Alx). THe receiver is capable of scanning through lnf finite
class of sets of Y' and detemmining which, if any, contains the
received symbol. After making this determination, the receiver
then tries to deéido. b;sed upon some type of logical analysis,

whiich menmber of X was actualiy trahsnitted.

The technique which is usually employed by the receiver to
decide which point was transmitted involves a predetermined
decision scheme which is known to both the sender and the receiver,
There are, of course, many ways by which this decision sheme can
be defined. The one which has‘become a standard in studies of
information theory is as follows: Let 0 £ A < 1 be given; let
(xl, Dl). erey (xn, Dn) be members of X = Y' having the properties
that D,/ Dy = 9 if i ¢ j, and such that u(D;|x;) 2 1-\. The
sender and receiver then agree to consider only those members
X90 Xgp eeny xncx. If 3 is transmitied, the receiver scans through
the sets Dl’ seey Dn and determines which, if any, contains the re-
ceived symbol. If the received symbol is in Dm’ the receiver con-
cludes that X, was transmitted; if none of these sets contain the
received symbol, any decision may be made. Th? receiver's concldsion
will be correct with probability 2 1-A,

1.1 Definition: A set of pairs {(xgs D)y weey (x5 D)} hav-

ing the properties described above is called a A-code of length n.




A quantity which will be of considerable importance later,
in fact that subject of most of the important theorems in informa-

tion theory, is defined below,

1,2 Definition: Lot S be a channel. Given 0 X A < 1, let

N(S, 1) denote the supremunm (sup ) of the non-empty set of inte-
gers N such that S admits a x-codo of length N,

Given n dunnels.Sm = (X, ¥y, (.lxm), (Y, YD), m=1,2,

(n) |

sssp D, one can form the product channel, S S1 X ., X Sn in

a natural way. In fact this channel is defined by S(n) - (x(“l,

X .. % xn; (Y("I,

u(n1 (Ju), (Y(n), Y(n]')} where X(n] - )(1

Y(nl') is the product of the measurable sﬁaces (Y‘, Y,'.), ms 1, 2,

«sey N, as defined by Halmos [4]; and if u€X, i.e., u = (xl. eees
x,) with x cX ), then W) (. |u) denotes the product probability

measure on Y defined by W™ (B,  «oo x B ) = u(Blx)) ....

u(Bnlxn) where B cY}, ..., B c¥).

1 n

1.3 Definition: The channel SCn) defined above is called a

memoryless channel of length n, If S1 = S2 =, = Sn = S, one

writes S(") = S” and calls S" the memoryless channel of length n

generated by S. Any channel may be regarded as a memoryless chamnel

of length 1.

.
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1,4 Remark: The definitions of N(s(™, 1) and N(S?, 3}

follows immediately from definitions 1.2 and 1.3.

Suppose there are N distinct points in X which the sender
wishes to transmit in such a manner that, for a predetermined
0 £ 2 <1, the probability that the receiver will wﬁngly deduca
which point was sent is 3 A, The channel $ cannot necessarily
perform this function if N > N(S, ). However, if for fixed 1,
N(Sn. 1) becomes unbounded with n, the problem can be sclved by
choosing an n, such that N(Sn°, A) > N, establishing a one-to-one
correspondence between the N points and a properly chosen set of

ng o ng
N members of X “, and using the channel S %,

This problem and two equivalent (according to Wolfowitt [11])

versions are listed below:

Form I : Given N and A, how small an n will suffice?

Form II ¢ Given n and A, how big an N can be achieved?

Form. III: Given n and N, how small a A can be achieved?

‘A companion problem to the above problem (call it the first)
is the (second) problem of constructing a code to implement the
answer to the first problem, In fact, it might be reasonably
thought thit the first problem could not be solved without a
solution of the second. This is not the case, and, at jaresept,

existing knowledge about the first problem considerably exceeds

o St i
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the existing knowledge about the second problem,

" One of the main objectives of this dissertation is to defins
a technique for coding (called a connected A-cods) and to investi-
gate what conditions must be placed on the channel so that such a

code will provids a solution to the second problem,

The sc;lution of the first problem is usually referred to as
the coding theorem and its converse. Precise statements of these
theorems must be reserved for later, since they involve terminology

which has not yet been introduced

The other main objecti’vo of this dissertation is to cbtain an
improvement of the known results for the converse of the coding
theorem for the general channel. It will be seen later that this
amounts to obtaining an improvement of the known resulés for an
upper bound for N(S", A) where S is a general channel (the channel

where both the input and the output are arbitrary sets),

Before continuing toward these objectives, some basic nota-
tion, definitions, and theorems will be listed for futuﬁ refer-
ence, Since information theory employs many of the tools of pro-
bability theory and measure and integration theory this list a

fortiori contains results from these disciplines,

RS SR A
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In addition to probability statements about the received

symbol, many of_the.iﬁpdrtant results entaii probabilistic
statements about tﬁe trﬁnanit:ed.symbol. The following develop-
ments will 1ndicatebfﬁé inportnnce and apﬁlication of such
ltntehents‘as well as provide a rigorous foundation for their
formulation. | “

1.5 Definition: Let S' = {X, u(.|x), (¥, Y')} be a given
channel. The set Q* = Q#(S') is defined to be the collection

of all entities |
L {xo, x;,» r}
of the following kind: The set Xo,(called the support of =)

is any fixed suheet of X, X; 1s a o -algebra of subsets of X_

containing all sets of the form

‘ {xlxcxo, u(B|x) <a,BeY’,a real}
i.e., guch that the function u(B|x) is measurable in x for
fixed BeY'. Finally v is a probahiiity ﬁeasure'on ther—
algebta.xé.

The apparent ambiguity in*létting the Greek letter =
both represent and be a member.of-thé entity'(xo, x;,_n}
will cause no confusion in usage and will allow for simpli-

city in notation.



.1,6 Definition: Let (Y, Y') be a measursble space, and

let u and v be measures on Y'. Then u is absolutely continuous

with respect to v (written u << y) if y(A) = 0 implies u(A) = 0;

v is singular with respect to y(uly) if there exists a set AcY'

such that u(A) = 0 and y(Ac) =0,

The following well-known theorem is stated for complete-
ness.

1.7 Lebesgue Decomposition Theorem: Let u and vy be meas-

ures defined on the measurable space (Y, Y'); then u can be

written uniquely as the sum of two measures u, and u, where

My << v and w[y.

1,8 Remark: Any set D such that u(D) = u(Y) is called
a support of u. This will be written D = spt u, If uly D can
be chosen such that y(D) = 0, Whenever u= MytH, with "1' << y
-and uzly a support, D, can always be d\os;n for u,, i-l; 2
such that uj(D) = 0 j¥i. Throughout this dissertation such a

choice for a support will always be implied.

1.9 Remark: Let u and vy be defined as above and let

W = u *u, where u, <<y and “2.LY° Then there exists a meas-

urable set D such that y(D) = 0 and uz(Dc) = 0. The set D is

called a singular set of u with respect to y. Let g(y) = duxldy

o Y i Ny
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(the R-ion-Nikodym derivative), then g(y) is a finite-valuéd,
‘non-negative, real-valued, y-measurable function, unique up to

a set of y-mesasure 0, such that
uy(B) = f g(y)dy, for BeY'
By definition of D, one is allowed to assume that
10 < gly) <= if ye©,
g(y) == if yeD.

Throughout this dissertation such a determination of Radon-
Nikodym derivatives will always be chosen,

The preceding develapménts provide a suitable background
f'or the definition of a new set of probability measures on

(Y, Y')., Let neQ*. For BeY' define
Y'(B) = [ u(B[x)n(dx).

It is easy to see that 7" is a probability measure on (Y, Y')

for each neQ*,

Let £ (y|x) = dul/dyﬂ where ul(.[x) is the absolutely con-
tinuous component of u(.|x) with respect to y'. Loeve [6] has
shown that f"(ylx] can be chosen such that it is jointly meas-
urable in xtxo, yeY' relative to the.o - algebra X;*Y'. By

definition of the set D in Remark 1,9, it is clear that f"(ylx)

it i et e < ARG
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" of the channel,
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can (and will) be chosen so that it also satisfies this joint
measurability condition in addition to the requirement spec-

ified in the remark,

The measure y' and the functions £ (y|x) will now be

used to define an important characteristic of the channel,

the Cagacitz.
Let vcQ* be arbitrary but fixed, Define
c(m) = [[ 10g £ (y|x) u(dy|x) n(dx),

= [f £ (y|%) 1og £ (y]x) ¥"(dy)n(dx)

if u(.]x) << Y“ for almost all [r] xeX. Otherwise, define

C(m) = + =,

If the support of r is countable, the following equiva-

lent definition of C(r) will be convenient, If u(.lx) << v'.
define C(xm = [ log £ (y|x} u(dy|x). It is cbserved that,

in this case, u(.[x) << y“ for almost all [r] x in the support

of v, Hence,

c(m) = § =(x) C(x|m).
xeSptr

1.10 Definition: Let Q = {reQ*| support of » is finitel}.

Let C = sup {U{n)|meQ}. The quantity C is called the capacity

Bl *‘.« ;';-‘9.< ;i?ﬁ:'ﬁ‘ﬁ@llﬂ*%w e iy R
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The following important and somewhat surprising result in

due to Kewperman [S].
1,11 Theorem: Let C* = sup {C(*)|vcQ*}. Then C* = C.

The coding theorem and its converse can now be stated,
The following statements of these theorems are those of

Wolfowitz [11].

1,12 Theorem: (The coding Theorem ): Let 0 < ) < 1 be

given, Then there exists a positive constant K such that for
any n > 0

NGS®, 2 2 NC - K/ .

1,13 Theorem: (The strong Converse). Let 0 < A <1 and

€ >0 be given, Then for any n sufficiently large

NS, ) S en(C ),

1,14 Theorem: (The weak Converse), Given 0 < \ < 1,

Then for alln >0
(1-1) log N(S", A) £ nC + log 2.

Theorem 1.12 was conjecturzd for the discrete channel by
Shannon [7] in 1948, The first proof was given by Feinstein
{1] in 1954, Essentially different proofs were given in 1957

by Shannon (8] and Wolfowitz (9]. Shannon also conjectured




13 {

theorem 1,14 for the discrete channel. The strcng converse is

due to Wolfowitz [9].

Wolfowitz [10] has shown that theorem 1.12 is true for a
semicontinuous channel by approxiniating the semicontinuous

channel by a discrete channel. The proof of theorem 1,13 for

the semicontinuous channel is also due to Wolfowitz [10]. The

following stronger version is due to Kemperman ([S].

1.15 _Theorem: Let 0 < A < 1 be given. Then for any

et e e

semicontinuous memoryless channel S there exists a constant

K»>0 Such that for any‘n >0

NGS", N < NC *+ KA )

Theorem 1,14 is due to Fano [2] who proved it for the
general channel. An essentially different proof of this
theorem has been given by Kemperman [S]'., A different expres-
sion for 'the right-hand side of the formula given in theorem
1.14 will be obtained in Chapter II, For small A this will
.give a much better result (in the since 'of a smaller upper
bound) than the oné given in 1,14, The follouing' well known
.theorem which will be needed for the pfoof is listed for ‘ ¥

reference,

Dk g P b B
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1.16. Theorem: Let;sm, m=1, ..., n be arbitrary channels

- oS e o R e e

of capacity Cm. Then the capacity ot the product channel S(n)

..'. ’c.

is C1 n

i




~ CHAPTER II
AN IMPROVEMENT OF FANO'S THEOREM

It is not unvsual in the field of mathematics for one to
conjecture an extension of a known result to a more general f» "
setting withcut being able to obtain a proof. Sometimes this _. | ;;

conjecturs remains sn open problem for many years. This is
the current status of both the coding theorem and the strong .

converse for the general channel,

In the formulation of a theorem the primiry dbjective of
which ii to cbtain an upper bound for same quemntity, one
usually attempts to establish as »mall an upper bound as p&u-
ible, The author is unaware of any theorem which gives & better
upp‘er bound for N(S, A) for a genoril channel than theorea 1,14,
Fano's theorem, The theorem presented below gives an improve-
ment, for small A, of Fano's result. The proof of theorem 2,1

is a modification of the proof of 1.14 given by Kempemman [5].

2.1 Theorem: Let S = {X, u(.|x),(Y, Y'))} be a given
channel. Then given 0 < A <1, 0 <t <1, one has, 'for each

positive n

(1-2) log N(S®, A) € nC + log (.l_*.xl).
ot

where C is the capacity of S,
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Proof:

It follows from theorem 1,16 that the capacity of the

channel S" is nC; therefore, it suffices to prove that
(1-2) log N(S, A) S C + og (I_’TE).
t

Let N be ary positive integer such that N X N(b , A). Then

N

je1® let

there exists a A-code of length N; call it {(x;, Dil}

As {inCxi, D;1 is a member of this A-code}. (This notation

could be simplified by assuming that xi's were distinct members |

N ' :
of X), For each xcA let N(x) = J ] 1, and let n(x) = N(x)/N.
i=1 xex, '
i

It is easy to see that = is a probability measure on X with

finite support. (More precisely reQ(S).)
For each B¢Y' define

Y'(8) = I uelne.

xeA
As has been pointed out y'is a probability measure on (Y, Y')

and u(.|x) << y" for all xeA. For n(x) > O let

£ ylx) = du.|x)3/ay".

Now, by definition,

I w0 [ £ T0 log £yl v (&) = C(a) 2 C.

XcA



Cbzerve that

. .
N ol =N T N fivle
is] xcA

= 1 on(x) £i(ylx) = 1,
xXcA

Similary,

N
N~ R £(y|x) tog £'(y|x)v"(dy)
i= .

-IAunj £(y]x) log £ (y|x)¥"(ey) S C.
X€

A new set of functions iS defined on Y as follows. For..

each 1 S i <N, define

N if y,cDi
hi(Y1 - . .
t if chi

N
Then ] h,(y) 5 N(1+t) for each y.
ial

The desired results will now be cbtained by analyzing the

tems of the following equation:

1, N ‘ h, (y)
NS T olxg) log mmte— v"(d)
in} f (ylxil

17
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N .
WL ol ter Folpran
i=

N
-1 T [ folxg) t0ph v e
ie] .
For reference this will be calledv equation (*). .

For each 0 i SN

[ £r(x) 10gh )Y (&) = [ log hy(huleylsd

¢
u(Dilxi) log N + u(Dilxil log t.

2 (1~21) logN + X logt.
-1 N " "
Therefore, N 1Z1 [ £rlx) log h )y (&)

2(1-2A)1logN=+ A logt,

The function log Z is concave; hence,

a ¥ o b, a1 N
N 2 f (ylxil log—"--—-—.< log N 2 hi(yl S log (1 » t),
isl Wl i=1

e U A

et AR T e i e Tt i L
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v (dy) £ log (1 ¢ t).

N
Therefore, N ) f'(ylxi) log —
| i=1 £0rlx)

Insortin'g these inequalitites into equation (*), one cbtains

log (1+t) +C2(1~12) logNe+2)logt,

which is equivalent to

(1- 4 logN S c+ log (g5
t

Since N X N(S, i] was arbitrary, the theorem is proved.

2,2 Remark: Given 0 < A < 1/2 let £f(t) = (1 » t)/tx
for te(0, 1); £f(t) » + @« if ¢t ¢(0, 1}).  Then f has a minimum at
t = A/(1 - A), The function g(A} » A"*(1 - A’ ! is an incress-

ing function of A and g(y) < 2.

2,3 Corollary: Let S be a given channel. Then for

0 <A <1 one has, for each positive n, (1 - A) log N(S", A) %

nC - A log A + log(l +# 1), If0 <A <1/2 then

(1-1) log N(S™, &) SnC - A log A -(1 - 1) log (- 1),

i
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CHAPTER I1I

CONNECTED A-CODES

Although for a given channel, S, the v;lue of N(S, A)
may be known for each 0O<i< 1, the actual construction of a
A-code of lengtth(S, 2) may be quite difficult. In addi-
tion, for‘practiﬁal reasons, it may be desirable to place
various restrictions upon the entities of the code. Such
restrictions wmay, of course, preclude.the possibility.of
attaining a code of maximal length. In thié chapter, a
A-code with a specified restriction is defined and analyzed.

In the operation of a channel, oﬁe of the functions of
the receiver is to scan through the sets bi of a given A~
code {xi, Di}};_1 and determine which of -these, if any, contains
the received signal. This determination may be quite difficult,

the degree of the ﬂifficulty depending on the nature of the

sets (Di}T-l' (Recall that the only restriction placed on the
Di's is that they may be members of Y'.)

3.1 Definition: 'Let U be a topology on Y. A U-conpected

A-code is a A-code (xl. Dl)’ cees (xn. Dn) where Di is a U-

connected set for each i=1, 2, ..., n.

3.2 Definition: For a given channel and a fixed real

number 0<i <1, let N(S, A, U) denote the supremum of the
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non-empty set of integers N such that S admits a U-connected

A=code of lengfh N.

It is clear that N(S, A, U) 2 N(S, A) for each 0 < 1 <1
and any topology U, It is also clear that equality need not
hold unless some restrictions are imposed upon the channel.

It appears intuitively clear that these restrictions should

be placed on the set of prabability measures {u('.lx)lux) and
m&t include restrictions upon the supports of these measures.
Although it would be desirable to let X and Y be arbitrary

sets and U be any topology on Y, such generality leads to com-
plicated and unwiedly analysis and yields very few results, In
this chapter some restrictions will be placed upon. the input
spécc and the output space as well as the set of probability
measures, These restrictions will allow for almost all of the

practical physical situations one might expect to encounter,

The following example indicates some of the restrictions

which must be placed upon this set of probability measures,

3.3 Example: Let X = {0, 1}; let Y = [0, 1]; let Y' be
the Borel sets on [0, 1]; and let y be Lebesgue measure, The

measures u(.|1) and u(.|0) are defined as follows: For BeY'

define

w(Bl0) = [ (-ux+2)dy + [ (ux-2)ay,

B B,
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u(B|1) = [ 4xdy ¢ [ (-dxed)dy,
| By By

where B, = B/ [0, 1/2] and B, = Bn (172, 1]. g 4 N

Let U de the usual topology for [0, 1]. Since X contains

it 2

only 2 elements N(S, 1) £ 2 for all1 0 < A < 1/2. Observe that ‘ !
w([0, 1/4]U (374, 11]0) = 3/4 = u([1/4, 3/4][1]. Hence o
. N(S, 1/4) 2 2, 1t is Insy to see th‘it if Io is any interval .
contniﬁcd in Y such that u(IOIO) 2 3/4 then y(lo) > 1/2; also if
I1 is sny interval contained in Y such that u(Illi) 2 3/4 then
Y(I,) 2 1/2. It follows that N(S, 1/4, 1) = 1.

In the example above, one is able to obtain a longer non-
connected code becase of the nature of the Radon-Nikodym
derivative of u(.|0) with respect to Lebesgue'neasure. It will
be observed that if one chooses 0 <) <1 md censiders any con-
nected set A such that u(A[0) = 1-), then there exists a set B

such that u(B|0) = 1-2 and y(B) < y(A).

Aithough it was not difficult to show that N(S, 1/4) = 2 while

B e i ot P

N(S. 1/4, U) = 1, it is easy to see that this problem could vrapidly
become difficult as the number of points in x is ihcr;ued.' Given
'x;x. let f(y|x) = du(.[x)/dv. The relationship between N(S, 1) ‘and - §
N(S, A, U) for arbitrary A is very difficult, in fact, almost

impossible, to determine when X is infinite, mles$ one requires
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some type of uniformity among these functioms. Such a restric-
tion, to be rigorously defined later, will be placed wpon the
channels investigated in this chapter,

The following auxiliary results will be needed later.
Throughout the remainder of this chapter R will denote the real
nuzbers. B will be the Borel sets, y will be l.ebqsgui measure,
and Uwill be the usual topology for the reals. If Yis a

subset of R then the g-algebra Y' will be the Borel sets on Y,

3.4 Theorem: Let u be a totally finite measure of (R, 8).
Let ¥ be any measure defined an (R, B), Let a = u(R), let
0 <A X abe given, and let A = {AcB: u(A) 2 o-2}., ThenA con-

tains a mewmber of minimal y-measure,

Proof:

Let u = u, + u, where u,. << v and u,[y. Let

Ao = Spt . 1f u(AO) 2 a-1 the theorem is trivially true.
Suppose nof. let 8 = a-A-u(Ao). Let f(y) = dulldw. Let

E, = {y: £(y) 2z}, Observe z, < z, implies EL. 2D E_ ., Note
2 : 1 2 z) 2,

that E_ is a y-measurable set for each zcR, Let I(2) = [ £(y)dy.

E;

Then I(2) is non-negative, monotone non-increasing and left-

conti- uous. Let z, " inf {z: I(z) £8}. bserve that

Iz 2 8,z > 0.
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Now if BC E, and CCES , then [ £(y)dv 2 [ £(y)dw > 0
% 2 c B

implies w(C) > w(B), [If ycC then f(y) < 2, while for yeB,

fy) 2 zO]. Hence if I(zol = § then Ez U Ao is clearly a set
o

of minimal y-measure such that u(E, U A) 2 -\, Suppose
0

I(z) > 8. Let E' = {y: f(y) > zo} and E" = {y: f(y) = zo).
If u(E') = 8 then Aou E' is the required s?t. If u(E') <8 then
u(E") »8 ~ u(E') > o, Let E'" be a subset of E" of {-measure
(8 - U(E'))/zo. Then w(E'V E'") = 8 and E'UVE" has minimal
v-measure, Hence A = AOUE'U E'" is a set such that u(A) 2 a=2A

and such that y(B) 2 v(A) for any set B such u(B) 2 a-A,

3,5 Remark: Let A be any set of minimal y-measure such

that u(A) 2 a-A, Let B = spt u, and let y = inf {ylulc- -, y)

2 ad = uy(B))s Let £(y) = duj/dv. If £(y)) > £(y,) for almost

all [v] Y1 Yo <72 then A can be chosen to be A = BU (-=, yo).'

The proof of the following two Corollaries comes immediately

from the proof of theorem 3.4.

3.6 Corollary: Let f be a non-negative real-valued Lebesgue

measurable function. For BeB and 0 £ a < [ f(yldy there exists a
: _

set ACB of minimal y-measure such that [ fdy 2 a.
A

3.7 Corollary: Let u be a totally finite measure defined

on (R, B}, Llet a = u(R), Ifu <<y, then there exists AcB such

that u(A) = a-A and v(B) 2 y(A) for any BeB such that y(B) 2 a=A.
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In several of the theorems dovolaﬁod in this chapter, it
will be hypothesized that u(.|x) << y for all xeX. The follow-

ing theorem gives a partial justification for such requirements,

3,8 Theorsm: Let u be a totally finite measure on (R, B),
Suppose that fcr each 0 X A £ u(R) there exists A,¢B of minimal
y-msasure such that u(AA) 2 uw(R)l=A and Ax is connecied. Let

W=y ¢y vhere y, <<y and uly. Then there exists a support

of ¥, which contains at most one point (|spt uzl 3 1.

Ve e e e

Proof:

Suppose |spt uzl 22, Let A= {A|lA = spt u, and
Y(Al = o}, Then given A:A,‘ A is not connected, Let A = u(R) ~
uz(,Rl and let AA be any set of minimal yvy-measure such that .
“(AA) « 4(R) = A, C(bserve that, given AcA, u(A) = u(R) - A, :
uqnc§ *(AA) = 0, Therefore "(A).) - "Z(Axl‘ It follows that

Ach; hence is not connected.

3.9 Lemma: Let f£f: R -+ R be a.e. continuous and non-

negative such that 0 < j fdy = a < e, Suppose there exists
R

Xy <Xy € Xg such that £ is continuous at x; i=1, 2, 3, and .
f(xll > f(le < f(xsl. Then there exists A > o such that, if

A is any set of minimal v-measure such that [ fdy 2 a-A, A is
A

not connected,

ek bR

i
2
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let E = (x: f£(x) 21/2 &(le + min @(x,), f(x0). Lot
8 = é £(x)dv, -

A

Let E, "EN{x: x2x}

.xz}.

w

Ez 'Eﬂ(’?‘ x
and

B; =/ f(x)av 11,2,
.

Since f is continuous at x,, *2 and x4, it is easy to see

that 81 g oy 82 and E is not connected.
lat 2 > o be chosen such that 8, + 8, 2 o-A > max (8,0 85

Now xcE implies £(x) 2 1/2 (x)), min (£(x;) £(x;))} and
xsE€ implies that f(x) < 1/2 (£(x;), min (£(x,), f(xsn}.' Thus ,
if A is any set of n-ir.iux y-measure such that [ f(x)dy 2 a-},
then y(AnE.cl =0, Morobvor, 81 >0, 8, >0, a:d a=l > max

(Bl’ 821 igplies AﬂEl £9, AnEZ # p. Hence A is not connected,

With the aid of Lemma 3.9, one can characterize those a.e,
continuous summable functions f: R =+ R such that given
© < < [ fdy thore exists a set A,,of minimal y-measure for
R .
which [ fdy 2 [ fdy - A, which is connected.
AA R :
3,10 Definition: A bell function is any function f: R~ R

such that there exists X, such that f is monotone nondecreasing

for x < X, and f is monotone nonincreasing for x > L

!
1
3
!
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3,11 Theorem: Let f be a non-negative a.e. continuous

ﬁpl-vul’uod function defined an R such that 0 < [ fdy = a <=,
. . R .

Given 0 <X < a let B be any set of minimal y-measure such that

[ £dv 2 a=A, Then thers exists for every A a connected set A ‘

such that [ fdy « [ fdy and v(A) « y(B) iff f is a bell function
A B - ‘

8.8,

Proof:
Cbserve that if f is not a bell function a.e. then
there exists points of continuity x, < xé < xq such that f(xll ’
> f(xz) < f(xz). Thus, the necessary part follows imgdiately |
from Lemma 3,9, The sufficient part will be proved by con-

structing the set A, The construction is similiar to that used

in 3.4,

Assume f is a bell function., Let l=.y = {x|f(x) 2 y}. Let

I(y) = [ £(x)dv. Let Yo = inf {y: I(¥} & a=d}, Then I(y ) 2 ‘
E . F)
0 y -
a~iA, Let E)',o = {x: f£f(x) > Yo} and E;o = {x: f(x) = yo}. Now
it is clear that if A1 and l\2 are y-measurab le sets such that
c
A\CE, and AZCEy and o < Y(A,)) X Y(A)) then ] fdy > [ fdy.

o o . 1 Az

Thus if y(E'y' ) = o the proof is completed, Suppose y(E" 4) ¥ o,

Yo
Then, E;'o' - [al. b,] U[az, b,] and E'o = (b, az) where
b1 S a,. Clearly one can choose a ¢ [al, bll‘ b € [32. bZ]

i R




such that b -a + b-a,]y, = u-d-f fdy, Now A = [a, b] is the
: E

]
Yo
required interval,
The preceding results will be used in the analysis of an

important special channel which will now be introduced.

Let S be a given channel, If‘ ﬁn}tin a value x is trans-
mitted, the receiver i3 able to detemine from the received
symbol that x was the point set, then ths channel is called
noiseless, Such channels rarely oscur in practice and are cf
little mathematical interest. On the other hand, if there is a
definite positive prdbd:ility that the feceiver's decision will
be wrong, then the channel is called noisy. An isportant type

of noisey channel is the channel with additive noise.

3.12 Definition: Let S = {X, u(.|{x), (Y, Y')} be a given

channel, S has additive noise if there exists a probability

measure u on (Y, Y') such that uw(A[x) = u(A-x) for each xcX,

AcY', The measure u is called the noise.

3.13 Remark: In order to assure that the operations indi-
cated in 3.12 are well defined, it will be assumed throughout
the remainder of this dissertation that if S is a channel with

additive noise then (Y, +) is a growp.

3,14 Theorem: Let S be a channel with additive noise u,

If u <<y, then u(.|x) << y for each xeX and f(y|x) = f(y-x)

28
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where f(y) = du/dviam‘i f(ylx) = du(.lx)/ﬁv.
. Proof: |

By the Radon-Nikodym theorem

WAlR) = u(Aex) = [ ey = [ Erexndy.
. A=-x A

Hence, by the absolute continuity of the integral, w(Alx) <<y,
Also, by the Radon-Nikodyam theorem
u(Alx) = { fly | x) dy.

Therefore, f(y|x) » f(y-x) for almost all [v] ysY.

Now it is clear that to determine a necessary and sufficient
condition for N(S, A, U} = N(S, A), where S is a channel with
additive noise, one need only investigate a single heaure. the
noise u, The folluﬁifxg concept will play an iqortmt.role in

this investigation,

3.15 Definition: An interval (a, b] is left adjusted in

an interval (c, d) iff a = ¢ and b = d. A sequence of disjoint
intervals ((ai. bi]};‘-l is left adjusted in an interval (¢, d)
iff (al. bll is left adjusted in (¢, d) and'(ai, bi] is left ad-

justed in (bi-l' d) foris=s 2, 3, ..., n.

3,16 Definition: Let u be a measure defined on (R, 8).
Let 0 X A <1, An interval (a, b] is (u, A)-minimal left ad-

juwted in (¢, d) iff (a, b] is minimal left adjusted in (¢, d),

g

u(a, b) 2 2, and if u(c, bl) 2 A then l:b1 2b. Let {ui}zsl e

B e
J-dplr-

]
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‘ality that (bn}:_l. is a decreasing sequence. Then {(c, L))

measures defined on (R, B). A sequance ((‘i,' bi])‘;_1 is

((ug)}.ys M-minimal left sdjwted in (c, d) iff (a), b,] is
(,ul. Al-minimal left adjusted in (¢, d) and (ai, bi) is ("i’ A)-

minizal left adjusted in a’i-l" d) for £ = 2, 3, ..., N.

3,17 Lesma: let Y = (¢, d). If u is a totally finite

measure on (Y, Y'), then for 0 < A £ u(Y) there exists an inter-

‘val (3, b) which is (u, A)-minimal left adjusted in Y.

Proof:

Let A= {b: u(e, b] 2 2}, A ¢ ¢ since A X u(Y). Let

b’° » inf {b: becA)}. Let {bn};‘:n1 be a sequence contained in A

which converges to bo‘ It zay be assumed with no loss of gener-
nsl’
is a decreasing sequencs of intervals such that u(c, bn] < » for

all n and (¢, b ] = N e, b;]. Therefore u(c, b ] =
i=1 | o
lim uc, bn] 2 X Now it is clear by the nature of b that

1 S d

(co bol is (u, \)-minimal left adjusted.

3,18 Theorem: Lot S = {X, u(.|x), (Y, Y')Xibe a channel

with Y connected. let 0 S A < 1 be given, Let (xl. Dll. cony
(xn. Dn) be a connected A-code of length N(S, A, U}, Then there

exists a (,(u(,.lxi) }2_1. l-A)-minimal left adjusted sequence.

Proof:

It may be assumed that the sequence {Dj_}';‘_1 is ordered;
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f.0, if one donotu'ni . ('i' bi] then i < j implies 8 < ‘j"

By lemma 3.17, there exists a (u(.lxll. l-A)-minimal left ad-
justed interval in Y. Call it DI, Since D is (n(.lxll. 1-1)-
minimal left adjusted, it is clear DZCY-Di; hence,

u(Y- | x,) 2 1-A, Thus, again by lesma 3,17, there exists and
interval D) which is (u(.[x;), i-A)-minimal left sdjusted in
Y-Di. It is clear that proceeding thusly one cbtains the desired

sequence {Di)?-l .

3,19 Remark: In lemma 3,17 if u << y then x(ec, bol = A:
hence in theorem 3.18, if u(.!x) << v for each xsX "(D.’.leil -

I.A fori - 1. 2. ¢y n.

3,20 Definition: Let S = {X, u(.|x), (Y, Y')} be a channel
with additive noise u which is absolutely continuows with respect
toy, IfY is the real nwbers, Y' the Borel sets, and X a

closed interval contained in Y, then S is called a channel of

Ezge A,

Throughout the remainder of the Chapter the esphasis will

be on channels of type A. In most of the analysis it will also

be assumed that f = du/dy is a bell function., Techniques for

actual.iy constructing connected A-codes of length W(S, A, U) will
now be presented, The first such construction is for an arbi-
trary channel of type A. Since u({y}) = 0 the sets will be

written as open intervals,

3
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3.21 Construction: Let S be a channel of Type A. let

02X <lbe given, Let X » [a, b]. Let d; be such that
ue, d,) is {u(.{a), 1-1) minimal left adjusted. The remainder

of the code is constructed inductively as follows.

Suppose mesbers {xi. l)i}?-1 have been cbtained. Let
Dy = (dy_yo d)e I u((dy, d) [b) < 1-A the construction is com-
pleted; otherwise, dNﬂ is obtained as follows. Let

L« inf (d* - 4| there exists x c[a, b] such that u((dy, d") [x)
2 1-4,) Clearly u((dy, dy + £ - ¢)[{x) < 1-A for all ¢ > o and
a1l xcX, It will be shown that there exists xcX such that
u((dy, dy ¢ O(x) 2 1-A, The nelst elemsnt of the code will be
chosen to be {x,(dy, d, + L), If.tﬁen is more than one x
such that u((dN. dy ¢ 8 (x} 2 1-2 then any such x may be chosen,

Let F(y) be the di;tributim function of u, u <<y implies
F(y) is cqxtinuous. Gbserve that for any xeX Fx(yl s F(y-x)
where F (y) is the distribution function of u(efx). Aso if
xeX, k > 0 then u((dy, & + k)| x) = F(dy - x ¢+ k) - F(d - x).

Let £ Y £ then for each n there exists X, such that

F(dy = x, * &) - F(dy - x) 2 1A, {x ), CX hence is

bounded and therefore has a limit point, say x', Let
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(x ) +x', Then F(d, - x' + £) - F(d, - x')
n, en Fldy dy

 lim (F( -- + £ ) - F(d, ~ }J) 2 1-A. This proves
i x ¢ ) - - 5 ) »

the induction step. It is clcar that the code constructed above

has length N(S. A, 0.

In the preceding construction the specific nature of the
code is not readily apparent, In the case where f is a bell
function one can construct the code so that it is more trans-

parent, and, hence easier to manipulate.

3,22 Construction: Let S be a channel of type A, Let

- f = du/dy be a bell function and let 0 £ A < 1 be given. Let
X={a,b] andY = (¢, d) where both c = ~ = gnd d = + = are

allowed.

Since‘f is a bell function, there exists, by theorem 3.11,
a connected set (tl‘ tzl of minimal y-measure such that
u(tl, t2) 2 1-A, The nwsbers t, and tz will be used to con-

struct a A-code of length N(S, A, U).

Let (c, d)) be the (u(.]a), 1-2)-minimal left adjusted
interval in (¢, d). This interval exists by lemma 3.17, The
remainder of the A-code is constructed as follows, Let the ith

pair be denoted by (xi’(di-l’ di). The i+lst pair, if it exists,

SR RS T P R
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is c&\simctod by |

Case 1: Ifd; S a+t; let (4, d;,)) be the (u(. [a, 1-2)-
niniul lcft adjustod interval in (d . d) and let X0 "

Case 2: Ifa"'tx :di <b¢t1 let diol and xi#l'di t.
By dofinj.tion_cf 13 and ty it is clear that (di. di#l) is
{u(.lxi;11.:1-a)-uiaim.1 left adjusted in (d;, d.

>
iy
is coupleted. otherwise (d, 2 b + t, and u((d;, d)[b) 2 1-2)

Case 3: Ifd and u(d,, d) [b) < 1-A the construction

let (d;, d;,,) be the {u(.|b), 1-A)-minimal left adjusted inter-

101

val in (di’ d) and let Xie1 " b.

The code constructed above will be labeled by ((xi. Di)}?_l.

It is clear that {Di}r.:. is ({u( |x; }1-1, 1-A)-minimal left

|

adjusted. in Y and that if {(E {B )} is any set of pairs

i=}

such that {8 )2'__1

is (fuC. I¢, L 1 -minisal left adjusted
in Y then bN"- dN where Bi = (ai, bi]° Thus it follows from
theorem 3,18 that N = N(S, A, U). Any mesber of the code con-
structed above of the form (a, Di) will be galled an _g_-gair;

any member of the form (b, Di] will be called a b-pair,

It is clear that the code constructed above is nct.‘in
general, the only conpected code of length N(S, A, U)l. For

reference later this code will be referred to as a connected
e

code of type 1.
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From the constructions outlined sbove it is clux" that a
more precise notation for the code is {xi“)’ Di(l))';ﬁ' A, ll).

However when there is no possibility of confusion the X will be

supressed,

3,23 Definition: Let S = {X, u(.|x), (Y, Y')} be a

channel of typs A, Let 0 X A <1 and let {"i’ Di}l:-l be a

connected A-code of type 1, This code will called full if
. 4 -

u((Y ~ U Di)lx) s 0 for xcX. The term full code will always
i=)

refer to a connected code of type 1 which is full,

It is easy to see that givenany N > N(S, 0, A} there exists

XN such that N(S, Ano U) = N, and the AN-code is full iff given
A < Ay then N(S, Aye iy > N(S, A, ),

3.24 Remark: Llet S = {[a, b], u(.|x), (Y, Y*)} be a

channel of type A with additive noise u, Let 0 £ A < 1 be

~given, Then there exists a channel Sl. more precisely an input

alphabet [al. bll’ such that the A-code for Sl is full. In order
to verify this statement it suffices to demonstrate such an
alphabet., [lo remove any possibility of ambiguity let the family

of measures {u(.|x)|xcR} be defined by w(A|x) = u(A-x) for all

xeR, AcY', Since w << Y there exists an interval I = (tl’ tz)

such that u(I) = 1-) and given any interval J withy(J) < tz - 1:1

a5 e e ke o o i
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then u(J) < 1-a, It is'v.euy fo see that there exists y, > 8
such that u(Alx) < 1-A forall x 2 y,, AC (- =, a + ;2)';
similarly there exists y, <b such that u(Alx) < 1-1 for all
x £ Yae AC (b + t -i. let [a', b'] be defined by a' - a,
b = Yy * o - y2) + 2(t2 - tll. and let S' be the channel
with alphsbet [a', b']. Let (x, D.J}_, be the type 1 A-code
for §', It is easy to see that if DiC(a e, b tzl then
y(Dil =t - tl. Let {x{, Di}?-l be the code constructed ‘

analogously to (xi' D. }h.‘

i }iay Where one uses right adjusted se-

quences, Let a = sup {ylchi, D,N(-= a+t) #d}; let
8 = inf {y|yeD], D} N\ (b + ty, =) ##). Given £ 2 b' let B(E)

" be the point, considering the channel with input [a, £], ana-

logous to 8, Then given (9} 2 £, 2b' then B(&,) = B(g;) +
€, = &+ Thus one can clearly choose b* 2 b' such that
g(b*) - a is an integral multiple of (t'2 - tl)' The type 1

A-code for the channel with input alphabet [a, b*] is full.

In 3,21 it is clear that for a given 0 £ A < 1 and
1 Si<N(S, A\; Ul there may exist several xeX such that

W(D;|x) 2 13, We define X} = {x|xeX w(D,|x) 2 1-A}.

3,25 Theorem: Let S be a channel of type A, Suppose

N(S, A, U) = N(S, A) for all 0 £ A <1, Let O XX <1 be given

such that the A-code {xi(A), Di(A) }?'('Sl, A is full, Then

given 1 51 4 j SN(S, A, U) and A, C D, (A), A;C Dy(A) such
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that there exists x; s X: for which u(Ailxi'l . u(Aj [x;l jo

then Q(Ailxsl. by u(Ajlxg) for all x3 x;.
Proof:
Suppose there exists A such that the A-cods is full
snd there exists AiC DJ.(A),. Aj CDj(A) for some i ¥ j such

that tho;'o exists x; 3 Xi, x; 3 x; such that u(Ai[xil -

uCAj[xp >0 and u(Ailxj-l > u(Ajlx;). Then u((Di(Al - A |

Uagiag = 1-3 and w((D;00) - A UAD[x3) > 1-. Hence

choosing DJ(A) = D;(A) - A;) UAj and D}(ch (nj(nu A) -

Aj such that u(D;[x;) = 1-) one can cotain a A-code '
o !

{ai. Bi}N(s' A, 1) such that there exists at least one x¢X

i=]
NS, A, U ~ _
such thatWY - (J Bilx) >0, It follows by the abso- E

}

]

il | |
lute continuity of A, (More precisely by the fact that the end- ' 5(
point of each B, is a continuous function of 1) that there ’
: |

1

exists *o < A such that N(S, AODN(S, Ao’ U). But this is a :

a contradiction of the hypothesis that N(S, A) = N(S, A, (} for

all 0 2 <1, '
|
3,26 Corollary: If there exists a full i-code

(x5 0,006 1 D ng for some 151 4 5 SN(S, A, ) there is
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A C D, Achj such that u(Ailx;) yoy u(Aj |x;) and

f(yilx;l/f(yilx;l > f()'jlx;)/f(yjlxp for almost all [v]

yieAi. ychj and some x{cxil. xj'cx; then there exists 0 <« xl <1

such that N(S, Al) > N(S, Al. 0.

Proof:

Lot B; C A;, B,C A, such that u(B, [x3) =
u(Bj[x;) > 0, Then

T £y |xn

u(Bg[x) = {i flylxs)dy = ‘{1 £y 1xD) TRy 4

ety |xs £(y|x%)
1{ Ulx)) 17 % dy = u(lexj)

J

3,27 Corollary: Suppose f = du/dy is a bell function

and is unbounded. Then there exists a channel S of type A with

additive noise y and 0 < A < 1 such that N(S, A) > N(S, A, U),

Proof:
It follows from the definition ~f a bell function

that there exists at most one point, y , such that Tim £f(y) = =,
Yo

Qhe may ss well assume that ;io =0,
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(bserve that it suffices to show that there exists a
~ channel S = {[a, b], u(.|x), (¥, Y?)} and a full A-code

0. W 3
{x, D, };,, suchthat either () b, <a <x, or (2) x,_, <b <ay

where D; = (a;, b;). In the first case f(yla)/f(y[le is
unbounded on D, while this function is bounded on a siubset of

D, of positive u(. lxz) messure, Similarly, in the second case, -
£y [)/£(y|x,_ ) is wbounded on D, , while this functicn is

bounded on & swbset of DN of positive "(‘l"N-l) 'nusure.

If either u(~=, 0) = 0 or y(0, ») = 0 then, for a given
channel S, more precisely for a given input alphsbet [a, b], it

is clear that one can choose 0 < A < 1/2 such that the A~code

o o A e AW g A

is full, Thus either (1) or (2) must hold,

Suppose (-=, 0) ¥ 0 ¥ u(0, =), One may assume with no ’
ldu of generality that p(-=, 0) 2 u(0, =). (bserve that as
1~} increases :l(x) decreases, Thus there exists l-A < (==, 0)
such that tl(k) <a. By 3,24 there exists a charmnsl S such

ghat'tha A-code is full. Since t, (A <a; <a (1) must hold,

3,28 Remark: Sufficient conditions for N(S, i) = N(S, A, U)
will now be shown, Throughout the remainder of this chapter it

wil_l be assumed that £ is bounded and f(0) 2 f(y) for all yeY.

The importance of the behavior of the ratio f(y)/f(y-d) was

partially shawn in 3,26 and 3.27 in the form of necessary

e e A NN




conditions. The following theorem, which continues this

'inwstigation. will be used to derive a sufficient condition

for N(S,:A) = N(S, A\, ).

| 3,29 Definition: Given sets B1 and B2 then Bl is less

.tban Bjs By < By, if given any y,cB,, ychz theny, <y,.

3.30 Theorem: Lct‘xl. le:X'with x = xl*d, d >0, Let
0 < <1, If f(y)/f(y-d) is a decreasing function of y then
given any A}, A, with AMAA =8 md u(Alx) 212, 51,2
- e 3 > . -
thee exists By B,C AL UA, with B, <B, and u(Bi[xi) 2 1-a,

i=], 2,

Proof:
Gbserve that £(y)/f(y-d) = du(.[x)/du(.|x,). Let
€ = inf {y|u((A U &) N (=, y)x) 2 1-3}.  Let
By = (A{\UA) N(-=, §). Then, since u <<y, u(Bllxll s 1-1,
By 3.5 B, is a set of minimal u(.lle measure such that
M(Bylx)) 2 1-h LetBy= €, )N (AU A (B lx) + u(B,lx,)
| | = u(Ajlx)) + u(Aylx)) . Hence, since u(B,|x,) < u(Alx,),

u(lexz) 2 u(Azlle 2 -,

3.31 Lemma: Let 0 < A <1, Suppose that given any

X1 xzex with X; < x, such that there exists Al‘ Az with

| AN A =9 and u(Ailxi) 2 1-1, i=1, 2 then there exists B,
i = %4 2 le
B,C AIUAZ with B <B,, Bln B, = ¢, and ;..,Bilxil 2 lea,

i=1, 2. Then N(S, A) = N(S, A, U).
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Proof: ' ' _
Lot (x;, A)},| be a A-code of length N(S, A}, It
Wi1l be assumed that the indexing is such that i <'j'i‘-p’iia |

x; < Je By hypothesis thers exists a code (x . A'}i.1 with
UACA U‘N and A} < AL, By the same ai'gunqnt there is

N L -
a code (x ’ A"}1 | ¥ith Al <A "and A} < AN It is easy to
see that repetition of this logic proves tho cxisnnce of a

- 13 ¥ ( (3 < . -
code (xi, Bi)xnl with B, <B, <B, for 3 -1 SN, It is now
clear that there exists a A-code ("i' ci}i-l w%th ¢ < Cj when-

ever i < j,

Lot a, = inf (ylycci};'hi = sup {y‘lycci}.‘ ‘Lot D, = (a;, by).

Then u(D.lx.) 2 u(C, lx ) 2 1-A and D, nn =g ifi ¢4 j. Thus,

(x s D. )1_1 u a connected A-code of length N(S, A).

The following theorem is an immediate consequence of the

two lemmas,

3.32 Theorem: Let S be a channel of type A with

f = du/dy a bell function. If f is log-concave then N(S, A) =
N(S, A, U) for all 0 %A < 1. In particular, N(S, A} = N(S, 2, w

for all 0 £ A <1 if S has additive Gaussian noise.




e

It will now be shown that there exists channals of type A

with £ « du/dy a bell function for which there exints 0 < A <}
such that N(S, A) > N(S, A, U),

3.33 Definition: Let F be the set of all functions of
M

the following kind. Given 0 <3 <1, 1 < ¢ < 1/s, define

fly) = ¢t ify c(-8/2, 3/2)

) = v = 248y 12, - U 372, Y21

«( e lsevhere,

O“""‘—'—p

s
3

L L
N"-‘d

Figure 1 A Typical Member of F

3.34 Remark: Given fef then f induces a probability

measure Meo On the Borel sets in a natural way, f.e,

A

for all A8,

3.35 Definition: Given £ > 0 and fcF let S(f, £) denote
Sy

S P

I,

o e e A 7 S St A o A

S TN

—
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any channel {[a, b], u(.|x), (Y, Y')} with additive noise ue
md b"‘ - lo

It will now be shown that for certain mesbers of the

family (S(f, Q|fcF, £ >0} N(S, A) = N(S, A, U} for all

0 £ ) <) while for other members of the family equality does

not always hold.

3,36 Remark: Let S be a channel of type A, Given ycY
define f*(y) = {suwp £(y{x)|xeX}, Let F(y) = [ £*(y)dy. Then
Y ‘ ‘

~given 0 S X < 1 and any A-code {xi. I\i}f.:“1 then

I “(‘ilxil 2 F(Y).

ni

3 leoma: Given & > 0, feF, N(S(£, &}, \) = N(S(f, O,

A, W) £ \ 2 ]-st,
Proof:

Let Al 2 l-st such that Al-code is full, Let

N
N \
{x;, Di}i-l be a full code, Then izl u(DiIxil = F(Y).

Hence N(S(f, &4, AI] = N(S(f, 4, Al' Ul_. Suppose there exists

A, <A, such that N(S(f, &), X)) = N(SC£, ), A)) = N. Let

2




N
(60 8, }}.; be & Ap-code. mizl u(B 1) 2 NU=2,L > NQ=A )

s F(Y). Which is a contradiction. Hence A < Al implies

N(S(EF, &), A) < N(S(f, &), 111, This coapletes ths proof,

N

3.38 Remark: et (x,, Ai)i-l be a full A-code with

A < l-st, Llet k be the ﬁunber of a-pairs, Lst Ai - (,ai, hil—

A
Gbserve that bi -8 >3 Suppose X el ¥ b, Then xi,l is

an interval, say [°1‘ “2]" In fact, see Figure 2, o, = b, + s/2

@d oy - oy = (I-Ast/u. 1£by - (a - 8/2s L2 thers exists
an interval (8, a-s/2) such that f(ylall = u for all

y ¢(B, a~s/2), see Figure 3. Thus under these conditions it is
easy to sec, Figure 4, that one can choose ‘i*l‘x:-vl such that
there exists y eA ; y,cA | such that f(yl{al “us f(yllxl'"l)
while f(yzla) = t and f(yzl,xl‘"l) = u, It follows from 3.25
that, under the conditions specified above, thers exists

0 3% < 1 such that N(S(f, £), A) > N(S(E, &, A, W),

by-(a-3 | f(yia) £(y|a,)
| "
|
1
| | |
. ! l '
] . o
i j 1
! z l
I . - :
1 s a ’ a a
a- -2- 8- 3 \bk 1 ps k+l

Figure 2. Definition of the Interval (°1° °2)

i
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fiy | a)

bktl

b cnrnn aned

Definition of the Interval (8, a-3/2)

Figure 3:

~\
o

-
———

b
S
L]

ol

’ unen e o asus ol
Lo

e i §

f(y {a)
"

p o oo --

P Y

bk01

A Choice for f(ylx."“l)

Figure 4:
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3,3 LouaV: If st < 1/3 there exists 0 < A < 1 such that
N(S(£, O, A) > N(S(£, 9, A, ).

Proof!

If b-a <s let A be such that N(S(f, §), A, ) = 3
and the J-code (x, A} ) is full. Let A, = (&, b, Gbserve

that b1 <a+s/2, One can assume that x, = (a +b)/2, Now
by~ (a-3/2) <5 <-11'-’- . Thus, for this case, the conclusion

follows from 3,38,

Suppose b - 2 23, Let A = max {A[A < 1-st and the A-code
B

is full}, Llet {xi, AN

be a full Ao-code where Ai = (ai, bi)
and let k be the number of a-pairs, Then either (1) b <a~ s/2,

or (2) b >a+ s/2, or (3) b =a> s/2. (Observe b, 2 a +s/2
implies k 2 2 since bk 2a+s/2, k=1, ands < 1/3 implies
822 a-3/2+3 0%3*3 > a-8/2+ 35; but, this indicates
that bz - (a ~85/2) > 3s which says that there exists

do <Ay < 1 - st such that N(S, A;, U 2 N(S, A, ) + 1 which

contradicts the definition of Ao.

If (1) is true then by - (a- 3/2) <3 <-11"-"- and the con-

clusion follows from 3.38. If (2) is true then there exists

£ c¢(a, b) such that ;cx:. Now, replacing (x, A) by (§, A),

e

T s i A 4 ot
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one cbtains & code with k-1 a-pairs and b, , Xa - $/2, Again

the conclusion follows by 3.38., If (3) is true let

Ap @ max (A[A <3, and the A-code is fulll. Let (g, B}}., be

s full xl-?codc and let n be the number of a-pairs., Let

Ai " (ai, i). Then either (1') b," < a+s/2or (2%)
by > & +3/2, The conclusion follows by the same argusents

used above,

3,40 Theorem: N(S(t, &), A) = N(S(£, 8, A, U) for all

0 $A<) {ff given A < 1 - st such that the A~code is full then
1

oither N(S(7, £, A, 1) = 20r A $ 1+ st - 5~ 3.

Proof:
L~ = "]
The condition A £ 1 + st - }t-- s} is equivalent to

To show that the condition is nc ~essary assume N(S(f, O),

A, ) = N(S(f, &3, ) for all 0 S A <1, By 3.3 st: 1/3.

Lot A, = max {AM[A <1 - st and the Aecode is fulll, Let

{xi, Di}f-l be a full Ao-codo and let D, » (a,, bil' Suppou'

N(S(E, O, Ags Uy >2, Since 1l -2 >st21/32
W((3 - % a-s/2la)b, >a-3/2. Ifb, <a+s/2 then

1edgmu(a-dbllaed®® o @ - (a- Dt which, by

225 (5t 1£b 2 aes2

3,38 is greater than or equal 0 - (T)t.

e s e e
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it is easy to see that bi - a2 -li-’-'f s forl 241 SN, ’ﬂms ._

.52 2 a+3/2 ol'r'-o s; hence b, - (a - $/2) .’-1-330 2s, ‘It": _

, l-s '
follows by the maximality of Ao that - < s. Hence,

1o Awudyla) 2 u((a-3, ass/2]a) s 3204 g > 138,

(%"-)t. Thus the condition is necessary.

To show that the condition is sufficient let 0 < A 51 +

st -%- 11-. Let X, <X, and let Al’ Ach’, AIAAZ -ﬂ.l If

-’é?- >s and Xy - X < %i then u(Allxl) + u(Azlxz) <.1 - st ¢ "

(5 e s)t <2010, Thus if u(A lx;) 2 1-A, i = 1, 2 then

either (1) x, - x, 2 s or (2) x; - x; <%3< s,

. 1-s .
-Case 1: X, = X <—2- <s, It is easy to see that

X, +8/2> x) - $/2. Let £2(y) = max (£(y|x)), £(y]x;)) and

lot u*(A) » [ £*(y)dy for all acY', Cbserve that given
A |

Xy - 8/2 <y < x, *+ /2 then u* (A, UA)) = u((AUAIN(-=, Ylklxllv

*WAUADA G =) x50, Let & = inf (y[u((AUA) ==, D) [x))

21-2 LletB) = (AUMIN(-=, €. Then u(Bllxll = 1-A, Let
B, = (A,UALN(E, =) Observe that u*((AIUAZ)n(-f'. X, = $/2))

< 1-dy and u*((A,UAIN(5, + s/2)) < 1-A, If follows, since
u"(AIU A)) 2°2(1-1), that x, - s/2 < < x‘1 + s,. Hence,

201-2) £ ur(AUA) = u(By|x)) + u(Bylx). Therefore,

uca_zlx‘z) 2 1=,




Case 2: X, = X; 2 »l—?-. Then f(ylxl)/f(y\le is a decreasing
function of y. Thus, by 3,30, there exists B, < B,C AU A

such that u(B;{x;) 2 13, i =1, 2.

1€ follows from 3;31 that N(S(f, D, 3, V) = N(S(f, D, N
for all A £ Iﬂ»st-q}-%.

Suppose N(S(f, g, s\ 0 =2 and.tho A-code (xi, Ai)g-l

'is full then x, = a, X, = b and A, = (3-%.1’_;.‘.1. ifb-asls
then u(A,la) « u(Ayjb) = 1+ (b-a)t = F(y). 1f follows from
3,36 that N(SCE, £, A) = N(S(f, §, A, ). Ifb - a>s then
2%3 >a +s/2, llonce_ if A is any set of minimal y-measure such
that (A} 2 1-) them u(Al = (1-A-st)/u = F(beasl). Hence

N(S(Ef, &, \) = 2,

By lemma 3.37 N(S(f, £, \) = N(5(f, 2, 2, 3 for all

A 2 l-st. This completes the proof.

3,41 Corollary: Given £ > 0 there exists feF such that

N(S(E, &), 2) > N(S(f, ), », ) for some 0 <X.<1,

Proof:

Choose feF such that st < 1/3.

3,42 Corollary: Given fcF with st > 1/3 there exists

49

£ > 0 such that N(S(f, &), ) = N(S(f, D, A, W) forall0 « i <1,

i
g
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Proof:

Oxoosct-&—%. u:Aa-aos-%-t-.B-b-s¢%g.
Then u((a - -}. a)|a) = u((8, b+ %)lb) = st,. B-a=s, Hencs,

given A <1 - st such that the A-code is full then

N(SCE, &), A, U) = 2,

Jeud Corona_xz: Given feF with 1/3 < s < -t%% there exists

‘1 > 0 such that N(S(f, Ll), Al > N(S(f, Zl). X, U) for some J

0 <X <] and therc exisi> 4‘:2 > 0 such that N(S(f, lzl. i) =

N(S(f, 12)0 A, U} for all 0 < <1, 3
{

3

Proof: }

The second conclusion is an immediate consequencs of ‘ ;

Corollary 3.42., To show the first conclusion cbserve that
s <-t-}é iuplie; that 1 -~ st > 1 + st « _-;-- -2}- Now, given
l-3t>2> lost-%--zl-one can choose £1>Osuphthat the

A-code is full and N(S(£, £)), A, ) > 2.

3.44 Corollary: N(S(f, £}, A) = N(S(f, £}, A, U) for 3

tel

all L >0 and all 0 <A <1 iffs 2 7

Proof:

The necessity of the condicion is proved in 3.43.

>t < AR S 4
Suppose s 2 T Then 1 - st 3 1 + 8¢ 33




T ar

3,45 Conjecture: ‘It has been shown that if £ is a bell

function one may still have N(S, A) > N(S, A, U} for some

0 2 X <1, The author has been unable to formulate a proof that
L€ N(S, A) = N(S, A, U) for all 0 £ A <1 then £ must be a bell
function, However, with the aid of theorem 3.25 many non-bell
functions have been investigated and in all cases it has been
possible to find a A such that N(S, .A) > N(S§, A, U). This, along
with intuitive feeling, has led tn the conjecture that N(S, i) = |
N(S, A, U) for al2 0 5 A < 1 implies f is a bell function,
Examples are listed below of channels of type A whers f is not

a bell function, It will be observed that in each exaupie a
family of functions (hence, a family of channels) is defined,
and, in each example, given ¢ > o there exists a member f of the
family and a ball function g such that |£f(y) - g(y)} < ¢ for all
ycY. Moreover, N(S(g, £, A) = N(S(g, &, A, U} for all

0 =<1,

3.46 Example: Given 0 <8 < 1,0 <§ < 1/2, Let

f(y) = 1-8 for y e(- 6/2, §/2)
=1 %—E’g- fory e(- 1/2, - §/23 U (6/2, 1/2)
=0 othemwise

Let X = [0,1/2], let A = 1 - ug(~ 1/2, 1/4). Then

N(S, A, U) = 2 and tne A-code is full. Observe that f(y|1/2)

> f(y]o) for ally (0, 6/2) and f(y|o) > £(y|1/2) for all

51
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y €(1/2 = 6/2, 1/2). Hence, by 3.35 there exists 0 £ A < 1

such that N(S, A) > N(5, A, U).

Define g(y) = 1 fory c(- 1/2, 1/2)
» 0 othemwise
Then, for 0 <8 < ¢,|f(y) - g(y)| <e. It is clear that

N(S(g, &), A} = N(S(g, £), », U) for all 0 S.a <1,

Figure 5. The First Counter Example,

3,47 Example: Given fcF with s 2 (%;—1-). Define Mf to

+

be the farily of all function defined by:  Given 0 < m < u(%-!'-)

define  g(y) = -my + u - m(=2)  fory c(- 1/2 , - 3/2)

= my +u- m(%i) for y e(s/2, 1/2).

= f(y). ' othemwise




Given A < ] - 3-; such that there exists a full \-code
{x;, ‘Di}l,t‘_x then there exists 1 < j < N such that
a-8/2 < y <a ¢+ s/2 for all chj. Hence there exists

x;c)(\j -{a} such that |a - x¢| < -1-;-5- . lence there exists
J

v,eD, such that f(yllxg) > f(yllxl). New f'(ylxl) . f(v [xj)

for all yeDj. Thus by 3.25 N(S, A) > N(S, A, ) for some
0 <A<l |

Given € > 0, then for 0 <m < ¢, |f(y) - g(y)] < ¢ for
all yeY. N(S(E, £), A) = N(S(f, &), A, U) for all 0 < A < 1
by 3,44, |

I ! 1 T
f ! / | !
] ¥ ]
! ! 5 ! :
!
| ! ! ' i
) ]
! . ' ]
: = i [
' ' ]
! - 1
_ 4 _S 0 S 1
7 7 ? 7

Figure 6. The Second Counter Example,
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CHAPTER 1V

ADMISSIBLE MEASURE

It is reasonably clear that in formulating necessary and
sufficient conditions for N(S, A} = N(S, A, U} one need not
worry sbout every measure in the family M = {u(.!x): xeX}, In

fact for a fixed value of \, say Ao' if it is known that there

exists a connected Ao-code, { (xi, Di) )N

iel? of length N(S, AO),

then N(S, Ao’ Uy = N(S, AO) regardless of tha nature of the meas-

ures in the set {u(.|x): xe(X - {xi}b.:zl)}. In this chapter a
method will be defined for delineating those measures which can-

not affect the value of N(S, A, U}

Throughout this chapter both the input and the output will
be subsets of the reals; y will be Lebesgue zeasure; and U will

be the usual topology fcr the reals,

4,1 Definition: A measure u(.|x) is admissible if and

only if there exists a connected set AcY' such that u(Al|x) > 0,
u(Alx') 2 ulAlx) for all x'eX, and there exists x"eX such that

w(ASlx™ > 0.

4,2 Definition: Given 0 £ A < 1 a measure u(.|x) is

A-admissible if and only if there exists a connected set AcY'

AR BN Rs < o ke 4 ia faee o

it . 1
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such that u(A[x) 2 1-3, u(A|x') £ u(Alx) for all x'e¢X, and there

- exists x"e¢X such that u(Ac[x“) > 0.

4,3 Theorem: Let X* = {xcX: u(.[x) is admissible}: Let
X, ® {xeX: u(.|x) 1s A-admissible}. Le: .“n}:ol be a sequence

such that 0 = An < 1 which converges to one. Then X* = u “A
i=1 "n

Proof: : . i

Any A-admissible measure is clearly admissible, Hence
[_J

U XA ¢ X*. Let xeX*, then there exists a connected set AcY'
n=l n

e e 2

such that u(Alx') 5 u(Alx) for all x'cX, u(AS|x") > 0 for some
x"cX, and u(A|x) > 0. Thus, there exists n such that

u(Ajx) > 1- A, hence xsx)‘n.

4.4 Remark: If the channel is scmi-continuous, then for
any 0 3 A < 1 and any comnected A-code (x;, D), coes (% Dn},.
there exists conpocted a A-code (x'l. Dl)' cees (x;l, D) where |
xicx)‘ fer i= 1,2, ..., n unless X, is empty which implies
N(S, A, U) = ], However, for the general channel this need not
kold since maximums may not be attained. The following thecrem

and corollary show that this is true for ce:tain interesting

special cases,




4,5 Theorer: Let S = (X, u(.}x},.(Y, Y'}! be a given
channel; let S* » {X*, u(.;x), (Y, Y')}. Tﬁen if X is compact
and u(.|x) is continuous in x, i.e. w(Alx}) is a contiﬁuous
function of x for each AcY', then N(S¢, A, U} = N(S, A, U

whenever N(5, ., U} > 1,

Proof:
Suppose N(S, A, U} 2 2. Llet (x,, Di}?ﬁ‘ YW B ohe s
connected A-code of length N(S, A, U}. Let 1 =i X N(S, A, U,

Since u(Dilx) is 8 continuous function of x and X is compact

u(Di[x) has a maximum at, say, x'cX. Dj CD: for all j ¥ i;

hence, there exists x"cX such that u(D;.:lx"} > Q. Therefore,

xicx . If follows that N(S*, A, Ul = N(S, A, ).

4.6 Cornllavw: Irv C be the channel definadin 4,5, If

k(. 14) <<y for all xeX then N(S*, A, U) = N(S, A, U) for all

0 <A <1,

Proof:

Suppose there exists 0 < A < ] such that N(S, A, ) = 1,

Given xocx then, since u << y, there exists a connected set DeY'
‘"€
such that u(Dlxo) = ]-A. ilence u(D lxoj = A >0, Let x'eX be

such that u(Djx) has a maximum at x', " Then x'eX,.
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The following example Jemonstrates a channel with an
uncountab le input alphabet, in fact a closed interval, where

the set of admissible measures is countables,

4,7 Example: Let X = [0, 1] and 1st (Y, Y') be the real
numbers and the Borel sets respectively, Define measures ¥
and Yy by

: 2
1 -y /2
(A) B e—— e dy.
g %5 I{

"

1 -y°/8
U (A) # = [ & dy
2 z/ﬁ',{ .

for each AcY', Llet X, = {x|xeX, x is irrationall}; let Xy = X=Xy,

2
The family of measures {u(.|x)|xcX} is defined by
u(A]x) = uli.‘.-x) if x:xl:-{o) - 11}
u(Alx) = uz(A-x) if xeX, U (o} U (1}
for egch AcY',
It is easy to see that X cx*. In fact, if x = 0 let
Aw (-, 0); if x = 1 let A= (0, =); if xcxln(o, 1} let

A= (x-1, x*1). Then u(Alx) > 0, u(A®}x) > 0 and

u(Alx) 2 u(Alx') for all x'eX.

Consider x,eX,. Let AcY', A connected,with u(Alx) > 0

amd u(AS[x') > 0 for some x'cX. Then there exists a, 8¢R

e e



with 4 « (x-a, x+2) and eithor |x-al <« or |xe8] <=, If

'
1

sither x-a ¢ (0, 1) or x+8 ¢ (o, 1} there exists xlcxln(o, 1}
such that u(Ajx;} > u(Aixz). If x+8 < 0 then u(A[0) > u(A[x,),

and if x-a 2 1 then u(A[1) > u(Alx,). It follows that x,¢xe.



GIAPTER V

SUFFICIENT CONDITIONS FOR FINITL CAPACTITY

Since many of the studies in information theory iavolve fhe
channel capacity, it is highly desirable to know when the capac-
ity is finite. In this chapter, sufficient conditions are
cbtained for a channel with additive noise to have finite capac-
ity, It will bc assumed that the input and.output are subsets

of the real numbers,

S.1 Lemma: Let M = {u(.|x)|xcX be a family of probability
measures defined on a measure space (Y, Y'). Suppose there
exists a probability measure y such that u(.{x) <<y for all

xeX and {du(.|x)/dy|xcX} is uniformly bounded, Given n > o let

w"(.|u) and Y" represent the product measures an (Y, (Y"1').
Then givern ¢ > o0 there exists & > ¢ such that given uex” and

AF(Yn)' then W"(Alu) 2 ¢ implies y'(A) 2 ",

Let £(y|x) = du(.|x)/dy. Suppose {f(y|x)!xex} is
uniformly bounded by M 2 1, Let ¢ > o be given, Let § = /M,
Given uex" let f‘n(ylu) = dun(.(u)/dvn. Then f"(y[u) s M,

tience if uW"(Aju; 2 ¢ then y"{A 2 oM 2 (e = 6T,

. S D et i
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The preceding lemma enables one to detsrnine N(Sn, 3V for
any fixed values of n and A > 0 provided that there exists a
probability measure y with respect to which the family

{du(.|x)/dy} is miformly bounded.

5.2 Thecrem: Let S = {X, u(.|x), (Y, Y')i be a channel.
Suppose there exists a probability weasured y defined on (¥, Y')
such that the family (du(.|x}/dy!xeX} is wniformly bounded.

Then, given 0 < X <.1, there exists 6, > 0 such that N(Sn, Al £

;71\— for any n > 0,
A

Let 0 < A < ] be given, By the lemma, there exists a
6‘\ such that for any n - 0 and any uex” un(A(n){u) 2 1-) irmplies

y"{A(n)) 2 52. Singe Yn is a prohability measure, it is clear that

therc are at most —nL disjoint suwsets of Y of yn measure 62._

&)

The conclusion is now clear,
The following result, due to Kemperman [5], will be used
to show that the channel defined in thzsorem 5,2 has finite

¢apacity.

5.3 Tueuviem. Let S be a channel with capacity C, For

0 <) < ] define
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Then for each 0 <\ <}

cCsT ).

5,4 Corollary: Let C be the capazity of the charnel

described in theorem 5.2, Then C < =,

Proof:
Let 0 < A < 1 be given, By theorem 5.2, there

exists 51 > c.such that N(S", A) < ;%—. Hence,
A

< = ‘—--l 1 - -
C< C(A) 5 lim ;~log (-E-J - log 6‘ <

N 6A

5.5 Theorem: Let S = {X, u(.{x), (Y, Y')} be a channel
with additive noise u which ié absolutely continuous with
respect to Lebesgue hcasure Y. [f there exists a chuice for
the Radon-Nikodyn derivative f = du/dy such that f glyldy <« =

where g(y) = sup {f(y|x) [xeX} then the capacity of S is finite,

Proof:
Suppuse there exists a chcice for du/dy, say f,
such that f gly)dy <=, A totally finite measure, v',

is defined on (Y, Y') by v'(A) = [ g(y)dy for all AcY',
A

Let h(y{x) = du(.{x)/dy'. Then, if dy'/dy ¥ O,

hiy|x) = j:(‘l*l , g:, . fiﬁ%i} < 1, Hence (h(y|x)|xeX} is

wiformly bounded almost everywhere [y']..




Define y(A) = y'(A)/y'(Y) fur all AcY', Then ¢ is a
probability measure and it is clear that (du(.lx)/dw{xsx}'ii
uniformly bounded a,e, [y]. Thus by 5.4, the capacity of S

is finite,

5.6 Corollary: If S is a channel of type A and f is
8 bounded bell function then the capacity of S is finite,
In particular, if S has additive Gaussian Noise the

capacity of S is finite,

The hypothesis of theorem 5.5 requires that there must
exist & choice for du/dy which is bounded. The foll wing

example provides a partial justification for this restriction.

5.7 Example: Let S be the channel of type A defined

by: X = [0,1], Y is the real numbers, Y' is the Borel sets,

and, given AcY' u(A) = [ dx 573 where A= An(o, e-ll.
A2x(-In x)°°°
It is clear that u << y. In fact £(x) = 1 — almost
» N 3/2
2x(~1n x)

everywhere [y] where f(x) is any choice for du/dy. It is easy

to see that lim f(x) = =. Let F(x) be the distribution func-
X*0

function of u. Then

F(x) =0 ifx €9
1 -1
= Eigk; ifo0 <x<e
-l ifx2e!

62
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(T2 ,
Hence, given 0 < X <« ], Y(A) = » for my set A of

minimal y-measure such that uw(A) = 1-A, It follows, since

(TN?
X = [0, 1], that N(S, 2) 2 e . Therefore liw (l-i} log
A+l

N{S, A) 2 lim L. @, 1t follows from Fano's theorem that
™" .

the capacity of S is infinite.
5.8 Remark: Let S = {X, u(.|x), (Y, Y')} be a channel.
.on
1f X can be written in the form X = Z Xi» xir\xj = g for
is]
i ¥ j, such that the hypothesis of theorem 5,5 is true for
each of the subchannels S, = (X, u(.|x), (Y, Y'1}, then the
capacity of C iz finite, In theorem 5.5 it is shown that
for each i there exists a probability measure ¢, and

0 <m <= such that du(.[x)/dui S m for all xeX,. Let

n .
v %‘ Z Vie Then ¢ is a probability measure and
im]

du(. [x)/dy 5 n max {mill £i £n} for all xeX.
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